SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI P. G. DEPARTMENT OF APPLIED ELECTRONICS

Faculty of Science and Technology

Programme Outcomes

Programme: M. Sc. (Applied Electronics)

PO1: At the time of completion of the programme, the student will able to develop extensive knowledge in various areas of Electronics.

PO2: Apply the knowledge of mathematics, science, engineering fundamentals and electronics to the solution of engineering problems.

PO3: Identify, formulate, research literature, and analyse science and engineering problems using the first principles of mathematics and engineering sciences.

PO4: Understand solutions for electronic and allied systems and design system modules or processes that meet the specified needs with appropriate societal consideration.

PO5: Choose and apply appropriate modern tools/frameworks/platforms, software simulators, techniques, resources, and modern engineering and IT tools for solving engineering problems with an understanding of the limitations.

PO6: Function effectively as an individual, and as a member or leader in diverse teams.

PO7: Communicate effectively on engineering activities with the science and engineering community and with the society at large, such as, being able to comprehend and write effective reports and make effective presentations.

Programme Specific Outcomes (PSOs)

PSO1: At the end of the two-year M. Sc. Applied Electronics programme, the student will understand and be able to explain different branches of Electronics such as Electronic Devices and Circuits, Linear and Digital Integrated Circuits, Communication Engineering, Analog and Digital Electronics, Microprocessors, Microcontrollers, VLSI, Embedded Systems, Smart Sensors, Digital Signal Processing, Microwave Engineering, Embedded System Design, Computer Organization, Optical Fiber Communications, Mobile Communications, etc.

PSO2: Courses in foundational subjects like Electrical Engineering and Network Analysis, Electronic Devices and Circuits, Linear Integrated Circuits, Linear and Digital Integrated circuits, Microprocessors and Microcontrollers, Digital Signal Processing, Microwave Engineering, Optical Fiber Communication Engineering, Embedded System Design, etc. have a prominent lab component, offering hands-on training and exercises on numerous practical aspects of crucial importance.

A postgraduate of the M. Sc. Applied Electronics Program will demonstrate:

PSO3: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of systems.

PSO4: An ability to solve Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive at cost effective and appropriate solutions.

PSO5: Skill development by undertaking supervised projects by students with a flexibility to balance between research- and application-oriented work that require innovative approaches.

Course Outcomes (COs) for the Programme M. Sc. Applied Electronics

Programme: M. Sc. Applied Electronics			
Course	Course Title	COs (Course Outcomes)	
Code			
	M. S	Sc. Applied Electronics Semester - I	
1AE1	Electrical Engineering & Network Analysis	 After successfully completing the course, the students will be able to 1. Analyze electrical circuits using mesh and node analysis. 2. Apply suitable network theorems to analyze electrical 	
		 Apply Laplace Transform for circuit analysis. Draw oriented graph of network to determine their currents and voltages. Relate various two port network and apply two-port network theory for network analysis 	
1AE2	Electronic Devices and Circuits	 After successfully completing the course, the students will be able to Comprehend the knowledge of diode and its applications in rectifier and regulator circuits. Understand basics of BJT, JFET, MOSFET, UJT and their operational parameters. Understand feedback concept, topologies and their applications. Implement and analyze various electronic circuits such as oscillators, multistage amplifiers and power amplifiers using BJT. Design and analyze electronic circuits, 	
1AE3	Object Oriented Programming C++	 After successfully completing the course, the students will be able to Justify the basics of object-oriented programming concepts such as data types, functions, classes, objects, constructors, inheritance, overloading etc Design, implement, test, and debug simple programs in an object-oriented programming language. Describe how the class mechanism supports encapsulation and information hiding. Design and test the implementation of C++ programming concepts 	
1AE4	Electric & Magnetic Fields	 After successfully completing the course, the students will be able to 1. Apply vector calculus to understand the behavior of static electric/magnetic fields. 2. Formulate and solve problems in electrostatics and magnetostatics in dielectric media. 3. Describe and analyze electromagnetic wave propagation in free-space. 	

		 Analyze plane electromagnetic waves at boundaries between homogeneous media. Analyze the electromagnetic radiation from localized charges considering retardation effects
1AE5	Communication Skills	 Upon successful completion of this course, the student will be able to: Acquire knowledge about the various principles of communication. Learn the importance of verbal and non-verbal communication in the professional world. Imbibe the knowledge of effective classroom speaking and presentation. Learning the nuances of effective writing by using short and crisp sentences. Synthesize and apply appropriate and effective conflict management strategies.
1AE6	Electrical Engineering & Network Analysis Laboratory	 By the end of the course the student will be able to: Analyze and solve the Electric circuits Understand different transformer connections Incorporate knowledge on different testing methods for Transformers Apply the fundamental concepts in solving and analyzing different Electrical networks Estimate the performance of a particular network from its analysis
1AE7	Electronic Devices and Circuits Laboratory	 Acquiring basics of parameters and operation of various semiconductor devices. Implementation of basic circuits using electronic devices. Verification and analysis of performance of electronic circuits.
1AE8	Object Oriented Programming C++ Laboratory	 After successfully completing the course, the students will be able to Justify the basics of object-oriented design and the concepts of encapsulation, abstraction, inheritance, and polymorphism Write code, implement, test, and debug simple programs in an object-oriented programming language. Describe how the class mechanism supports encapsulation and information hiding. Design and test the implementation of C++ programming concepts
1AE9	Communication Skills Laboratory	 On completion of this course the student should be able to: 1. Accomplish sound vocabulary and its proper use contextually. 2. Speak clearly, confidently, comprehensibly. 3. Listen/view and comprehend different spoken discourses/excerpts in different accents 4. Write cohesively and coherently and flawlessly avoiding grammatical errors
1AE10x	Free Elective (Audit)	
IAE101	Electronic Devices & Components	 Atter successfully completing the course, the students will be able to 1. Understand component symbol, working principle, classification and specification. 2. Handle basic electrical and electronics equipment. 3. Understand all the fundamental concepts involving electronics engineering 4. Understand Function of PCB and PCB lay-out 5. Understand the IC fabrication technology, classification, packaging and SMD.
1AE102	Introduction to Lab Electronic Instruments	After successfully completing the course, the students will be able to 1. Understand the testing of electronic devices and components using ohmmeter, multimeter.

		2. Understand Function specification and usage of CRO, function
		generator, multimeter
		3. Understand the analog signal analysis using spectrum analyser
		and network analyser
		4. Understand logic analyser
0.4.5.1	M. S	Sc. Applied Electronics Semester -II
2AE1	Linear Integrated Circuits	After successfully completing the course, the students will be able to
		1. Comprehend the knowledge of basic concepts and performance parameters of Op-Amp.
		2. Analyze and design electronic circuits for various linear and
		3. Comprehend the knowledge of PLL, its applications and data
		 Acquire and apply knowledge for design of voltage regulator
		circuits using ICS and discrete components.
		5. Design Electronic circuits using different ICs and sensors.
2AE2	Communication Engineering	After successfully completing the course, the students will be able to
		1. Understand the necessity of modulation and identify the various components of analog communication systems
		2. Comprehend the knowledge of different modulation and
		demodulation schemes in analog and pulse communication
		Systems.
		presence of noise.
		4. Develop the ability to compare and contrast the strengths and
		weaknesses of various communication systems.
2AE3	Digital Integrated	After successfully completing the course, the students will be able to
	Circuits	1. Use Boolean algebra to solve logic functions, number systems
		2 Understand digital logic families and their characteristics
		3. Identify, analyze and design combinational and sequential
		circuits.
		4. Use the knowledge of semiconductor memories,
		programmable logic devices in digital design
2454	Miananna a an an d	5. Analyze, design and implement sequential logic circuits.
ZAE4	Microcontroller	:
		1. Understand architectural difference between Microprocessor and Microcontroller.
		2. Understand Assembly Language Programming concepts of
		Microprocessor & Microcontroller.
		5. Complemental interfacing of different peripheral devices with Microprocessor and Microcontroller
2AE5x	Professional Elective	
2AE51	Electronic	After successfully completing the course, the students will be able to
	Instrumentation	1. Identify various sensors, transducers and their brief
		performance specifications.
		2. Understand working principle of various transducers used to
		measure Temperature, Displacement, Level, Pressure, Strain
		3 Make comparative study of various transducers and
		understand their applications in industry.
		Understand Data Acquisition System
2AE52	Control Systems	At the end of the course the student will be able to:
		1. Determine transfer function models of electrical, mechanical
	1	and electromechanical systems.

		2. Determine transient response and steady state response
		parameters.
		3. Analyze stability/relative stability of the LTI system.
		4. Determine the state model and the response of the system using
		5 Analyze the response of the discrete time system
2AE6	Integrated Circuits	After successfully completing the course, the students will be able to
211120	Laboratory	1. Design various linear and non linear applications by using IC
		741.
		2. Design voltage regulators using discrete components and ICs.
		3. Implement various waveform generators using IC555, IC565,
		IC566, IC8038
		4. Apply practically the concepts of digital electronics.
		5. Understand the operation of various logic gates and their implementation using digital IC's
		6 To design and implement various combinational logic circuits
		and sequential logic circuits.
2AE7	Professional Elective	
	Laboratory	
2AE71	Electronic	After successfully completing the course, the students will be able to
	Instrumentation	1.link theoretical principles with practical issues of electronic
	Laboratory	Instrumentation
		2. get exposed to a set of multidisciplinary aspects, both theoretical and practical providing them with the ability of integrating blocks in which
		they have practically worked into a full instrumentation system
		and have practically worked into a ran instrantentation system.
2AE72	Control Systems	After successfully completing the course, the students will be able to
	Laboratory	1. familiarize with the modeling of dynamical systems and the
		characteristics of control components like ac servo motor, synchro and
		magnetic amplifier.
		2. simulate and analyze the stability using MAILAB
		3 analyze the physical systems represented in transfer function
		4. apply the control components like ac servo motor, synchro and
		magnetic amplifier.
		5. Design controllers, compensators using MATLAB software
2AE8	Microprocessor and	After successfully completing the course, the students will be able to
	Microcontroller	1. Develop skill of writing programs in ALP for various
	Laboratory	applications of 8085 & 8051.
		2. Interface various peripherals with 8085 & 8051.
2AE9	Basic Electronic	After successfully completing the course, the students will be able to
	Workshop	
		1. Identify and handle the basic electronics components
		2. Understand the electronics components and their data sheets and
		3 Have knowledge of fabrication technology for semiconductor
		devices and integrated circuits
		4. Understand Function of PCB and PCB lav-out.
		5. Analyze the circuit and troubleshoot errors if any.
2AE10x	Free Elective (Audit)	
2AE101	Environmental Studies	After successfully completing the course, the students will be able to
		1. Understand modern environmental concepts like equitable use
		of natural resources, more sustainable life styles etc.
		2. Unange men approach so as to perceive our own environmental issues correctly using practical approach based
		on observation and self learning
		3. Identify and analyze environmental problems as well as the
		risks associated with these problems and efforts to be taken to
		protect the environment from getting polluted

POs, PSOs and	COs for	M. Sc.	Applied	Electronics
---------------	---------	--------	---------	-------------

		4. Think in terms of sustainable envelopment based on the knowledge they have in different subjects of science and engineering
2 AE102	Introduction to MATLAB	 After successfully completing the course, the students will be able to : 1. Understand the main features of the MATLAB development environment 2. Use the MATLAB GUI effectively 3. Write simple algorithms to solve problems 4. Write simple programs in MATLAB to solve scientific and mathematical problems
	M. S	c. Applied Electronics Semester -III
3AE1	Digital Communications	 Upon successful completion of this course, the student will be able to: Understand basic building blocks of digital communication system and formatting of digital signal. Analyze performance of different digital modulation techniques. Understand methods to mitigate inter symbol interference in baseband transmission system. Implement different error control coding schemes for the reliable transmission. Understand various multiple access schemes and spreading techniques.
3AE2	Digital Signal Processing	 By the end of the course the student will be able to: Identify the discrete time signals and identify the type system. Compute the z-transform of a sequence, identify its region of convergence, and compute the inverse z-transform. Evaluate the Fourier transform of a signal. Design FIR and IIR filters. Understand the concepts of Multirate Digital Signal Processing and need of Filter banks.
3AE3	VLSI Design	 On completion of this course the student should be able to: 1. Demonstrate a clear understanding of CMOS fabrication flow and technology scaling. 2. Analyze CMOS based logic circuit 3. Realize logic circuits with different design styles 4. Understand Front & Back end design aspects of simple VLSI Digital circuits 5. Model digital circuits with VHDL, simulate, synthesize and prototype in PLDs.
3AE4x	Professional Elective#1	
3AE41	Embedded System Design	 After completion of the course the students will be able to: Distinguish real-time embedded systems from other systems. Describe fundamentals of embedded based firmware design. Evaluate the need for real-time operating system. Interpret real-time algorithm for task scheduling. Summarize technique used for product enclosure design and development.
3AE42	Electronic Circuit Design	 By the end of the course the student will be able to: Design electronic circuits using different ICs and sensors. Understand Front & Back end design aspects of simple VLSI Digital circuits Model digital circuits with VHDL, simulate, synthesize and prototype in PLDs. Design of combinational blocks/digital circuits.

POs, PSOs and	COs for	M. Sc.	Applied	Electronics
---------------	---------	--------	---------	-------------

3AE5x	Professional Elective#2	
3AE51	Introduction to Neural	By the end of the course the student will be able to:
	Networks and Fuzzy	1. Understand algorithms for supervised and unsupervised
	Logic	ANN.
		2. Implement the ANN concepts to solve real life problems.
		3. Analyze the ANN network.
		4. Understand algorithms in fuzzy logic for applications such as
		pattern recognition.
		5. Implement the fuzzy logic concepts to solve real me
34E52	Computer Organization	On completion of this module the student should be able to:
JALJZ	Computer Organization	1 Understand basics of computer organization
		2. Know functions of memory management unit
		3. Comprehend Instruction pipeline, ALU and CPU structure
		4. Appreciate differences between the CISC and RISC
		5. Familiarize with the multi-processor organizations: SMP,
		NUMA, Clusters
3AE6	Digital Signal Processing	On completion of this course the student should be able to:
	Laboratory	1. Generate different plots and explore results to draw valid
		conclusions and inferences in DSP problems.
		2. Approach for requirement of digital signal processing and
		alguar system design using simulation tools.
		Processing
		4. Understand the architecture of digital filter.
3AE7	Professional Elective#1	
	Laboratory	
3AE71	Embedded System	On completion of this course the student should be able to:
	Design Laboratory	1. get familiarized with Embedded system Design Tools and
		Hardware
		2. understand about the basic functions and structure of
		2 understand about the basic concents of embedded systems
		4 know about the applications of embedded systems
		5. understand about the development of embedded software
3AE72	Electronic System	On completion of this course the student should be able to:
	Design Laboratory	1. verify the theoretical concepts through laboratory
		experiments
		2. To understand the design procedure of different power
		supplies.
		3. To know to design transreceiver and voltage regulator.
		4. To understand the working of Microprocessor and DSP based
3AF8	Project and Seminar	Seminar Course Outcomes
571120	Troject and Semmar	Schinder Course Outcomes
		After completion of the course the students will be able to:
		1. study research papers for understanding of a new field, in the
		absence of a textbook, to summarise and review them.
		2. identify promising new directions of various cutting edge
		technologies
		5. Impart skills in preparing detailed report describing the project
		A effectively communicate by making an oral presentation
		before an evaluation committee
		Project Course Outcome:
		After completion of the course the students will be able to:
		1. Demonstrate a sound technical knowledge of their selected
		project topic.

24.50		 Undertake problem identification, formulation, objectives and solution. design the system incorporating hardware or software or a hybrid approach inculcate the ability to synthesize the results of the detailed analytical studies conducted, lay down validity and design criteria, interpret the result for application to the problem, develop the concept and detailed design solution and to effectively communicate the Project Report rationale Demonstrate the knowledge, skills and attitudes of a professional engineer.
3AE91	Free Elective (Audit) Industrial Management	 Student is able to apply principles of management in his / her extra and co-curricular activity in college and in industrial in- plant training. Student is able to understand management of manufacturing. Student is able to apply work improvement techniques in an organization where he undergoes for in-plant training. Student is able to find out and reduce work content of the job. Student is able to express leadership and entrepreneurial attributes.
3AE92	IPR and Patents	 After completion of the course the students will be able to: Understand the basic concepts of Intellectual Property Rights; Learn IPR related issues. deal with the emerging issues in IPR and the rationale for the protection of IPR.
3AE10	Industrial visit/tour	 After completion of the course the students will be able to: get an insight regarding internal working of companies get an opportunity to learn practically through interaction, working methods and employment practices. Get an exposure to current work practices as opposed to possibly theoretical knowledge being taught at college. combine theoretical knowledge with industrial knowledge.
	M. S	c. Applied Electronics Semester -IV
4AE1	Microwave Engineering	 At the end of the course students will be able to: Understand operations of microwave active and passive devices. Describe characteristics of microwave propagation through waveguides. Use S-parameters for characterization of microwave devices. Measure various parameters of microwave system. Understand various applications of microwave engineering in specific area
4AE2	Optical Fiber Communications	 Upon successful completion of this course, the student will be able to: understand optical fiber communication system Understand functioning of optical sources and detectors. Differentiate losses in optical fiber link and state transmission characteristics of optical fiber. Describe optical fiber communication system and its performance measures. Apply the fundamental principles of optics and light wave to design optical fiber communication systems
4AE3	Mobile Communications	 After completion of the course the students will be able to: understand various generations of mobile communications and the concept of cellular communications understand the basics of wireless communications Know GSM mobile communication standards, its architecture, logical channels, advantages and limitations

		4. Know IS-95 CDMA mobile communication standard, its architecture, logical channels, advantages and limitations.
		5. understand multicarrier communication systems.
4AE4x	Professional Elective#1	
4AE41	DSP with TMS 320C54xx	 After completion of the course the students will be able to: 1. distinguish between the architectural features of General- purpose processors and DSP processors. 2. Understand the architectures of TMS320C54xx devices. 3. use the DSP processors TMS 320C 54XX for implementation of DSP algorithms & its interfacing techniques with various
		I/O peripherals.
4AE42	Digital Image Processing	 On completion of this module the student will be able to: Analyze general terminology of digital image processing. Examine various types of images, intensity transformations and spatial filtering. Understand the methodologies for image segmentation, Compression and restoration etc. Implement image processing and analysis algorithms. Apply image processing algorithms in practical applications.
4AE5x	Professional Elective#2	
4AE51	Smart Sensors	 By the end of this course, the students shall be able to: 1. Comprehend the basics of smart sensors 2. Incorporate sensor information into the Microcontroller 3. Use MCUs/DSPs to improve the sensor IQ. 4. Discriminate various control techniques for smart sensors 5. Use smart sensors in real-world projects
4AE52	Biomedical Engineering	 By the end of this course, the students shall be able to: Understand the importance and association of engineering with medical field. Understand the significance of various human signals and recording techniques. Get familiarized with various medical imaging systems, various life saving equipment. Understand the conceptualization of patient care & safety requirements and its importance
4AE6	Microwave Engineering and Optical Fiber Communications Laboratory	 By the end of the course the student will be able to: Identify various microwave components. Demonstrate characteristics of microwave generated by various microwave sources and propagated through rectangular/circular waveguide. Measure transmission parameters of microwave propagation through rectangular/circular waveguide. Measure various parameters of microwave antenna. Be conversant on optical waveguide components, including single and multimode fiber, fiber couplers, connectors, and fiber amplifiers. Demonstrate basic fiber handling skills, including cleaving and splicing. Operate instrumentation for measuring fiber and optical system properties Measure noise and its effects on system performance.
4AE7	Professional Elective#1	
4AE71	Laboratory DSP with TMS 320C54xx Lab	 By the end of the course the student will be able to: 1. distinguish between the architectural features of General purpose processors and DSP processors. 2. Understand the architectures of TMS320C54xx devices. 3. use the DSP processors TMS 320C 54XX for implementation of DSP algorithms & its interfacing techniques with various I/O peripherals.

4AE72	Digital Image Processing Lab	 To study the image fundamentals and mathematical transforms necessary for image processing. 1. To study the image enhancement techniques, image restoration and the image compression procedures. 2. To Review the fundamental concepts of a digital image processing system. 3. To Analyze images in the frequency domain using various transforms. 4. To Categorize various compression techniques. 5. To Interpret Image compression standards and image segmentation and representation techniques
4AE8	Project and Seminar	 Seminar Course Outcomes After completion of the course the students will be able to: To study research papers for understanding of a new field, in the absence of a textbook, to summarise and review them. To identify promising new directions of various cutting edge technologies To impart skills in preparing detailed report describing the project and results To effectively communicate by making an oral presentation before an evaluation committee
		After completion of the course the students will be able to:
		 Demonstrate a sound technical knowledge of their selected project topic. Undertake problem identification, formulation, objectives and solution. design the system incorporating hardware or software or a hybrid approach inculcate the ability to synthesize the results of the detailed analytical studies conducted, lay down validity and design criteria, interpret the result for application to the problem, develop the concept and detailed design solution and to effectively communicate the Project Report rationale Demonstrate the knowledge, skills and attitudes of a professional engineer.
4AE9x 4AE91	Free Elective (Audit)	By the end of the course the student will be able to:
		 Understand Code of Ethics and Standards of Professional Conduct identify and describe ethical dilemmas in the context of historical and developing technology and engineering practice Understand the professional rules of conduct for engineers and how to apply them. Recognize conflicts of interest and develop strategies for handling these. Understand the importance of communication with all stakeholders.
4AE92	Technical Writing	On completion of this course the student should be able to: 1. gain an overview of the technical skills required by professional communicators

2. learn the methodology for planning technical communication projects
 understand and know when and how to use appropriate writing and formatting conventions
4. learn how to use industry-standard software to produce a project such as a manual
5. be familiar with key trends and issues in the field of technical communication